Sun’iy intellekt yordamida kiberhujumlarni aniqlash va oldini olishning zamonaviy usullari
DOI:
https://doi.org/10.5281/zenodo.15389863Ключевые слова:
sun’iy intellekt, kiberxavfsizlik, anomaliyalar tahlili, zararli dasturlar, fishing, tarmoq trafigi tahlili, autentifikatsiya, avtomatlashtirilgan himoya, tahdidlarni oldindan aniqlash, kiberhujumlarАннотация
Maqolada sun’iy intellekt (AI) yordamida kiberhujumlarni aniqlash va oldini olishning zamonaviy usullari
ko‘rib chiqiladi. AI texnologiyalarining kiberxavfsizlik sohasidagi ahamiyati, xususan, kiberhujumlarni aniqlash, tahdidlarni
oldindan belgilash hamda himoya mexanizmlarini avtomatlashtirish yo‘nalishlari tahlil qilinadi. AI yordamida tahdidlarni
aniqlashda aniqlik va tezlikning oshirilishi, shuningdek, real vaqtda javob berish imkoniyatlari yoritiladi. Maqolada AI asosida
ishlaydigan kiberxavfsizlik tizimlarining afzalliklari bilan birga, ma’lumotlar yetishmasligi, algoritmlarning noaniqligi va
axloqiy masalalar kabi muammolar ham muhokama qilinadi. Shuningdek, zamonaviy kiberhujumlarga qarshi kurashda
sun’iy intellektning roli va uning istiqbolli yo‘nalishlari tahlil etiladi.
Библиографические ссылки
Ivanov I. I. Raqamli davrda kiberxavfsizlik asoslari. – 2018.
Petrova A. S. Mashinaviy o‘rganish va uning axborot xavfsizligida qo‘llanilishi. – 2019.
Sidorov V. V. Kiberxavfsizlikda sun’iy intellektdan foydalanishning axloqiy jihatlari. – 2020.
Brown J., Williams R. AI-Powered Cybersecurity: A New Frontier. – Oxford University Press, 2021.
Smith A. Machine Learning for Cyber Threat Detection. – Springer, 2020.
Martinez L. Deep Learning in Cybersecurity: Threat Prediction Models. – Cambridge Press, 2022.
Gupta R. Automated Anomaly Detection in Network Security. – Wiley, 2019.
Lee K. Phishing Detection with AI and Machine Learning. – IEEE Security Journal, 2021.
Nguyen T. Deepfake and AI-Driven Fraud: Challenges and Solutions. – ACM Digital Library, 2023.
Johnson M. False Positives in AI-Based Security Systems. – Cybersecurity Review, 2020.
Walker C. Data Dependency and AI Security Limitations. – Harvard Cyber Law Journal, 2022.
Hinton G., LeCun Y., Bengio Y. Deep Learning for Cybersecurity. – Nature, 2015.
Google Research. Federated Learning for Cybersecurity. – 2022.
Sommer R., Paxson V. “Outside the Closed World: On Using Machine Learning for Network Intrusion Detection”. –
IEEE Symposium on Security and Privacy, 2010.
AI for Cybersecurity: How Machine Learning is Changing Threat Detection. – Cybersecurity Journal [Online].
Papernot N., et al. “The Limitations of Deep Learning in Adversarial Settings”. – IEEE European Symposium on Security
and Privacy, 2016.
Rigaki M., Garcia S. “Bringing AI to the Malware Fight: Detecting and Preventing Cyber Threats”. – Journal of Cybersecurity
Studies, 2021.
CSO Online. AI in Cybersecurity: Benefits and Challenges. – 2023.
McAfee Security. AI-Based Intrusion Detection Systems. – 2023.
Goodfellow I., Papernot N., McDaniel P. Adversarial Machine Learning. – 2017.
Huang L., Joseph A. D., Nelson B., Rubinstein B. I., Tygar J. Adversarial Machine Learning. – 2011.
Sculley D., et al. Hidden Technical Debt in Machine Learning Systems. – 2015.
BlackHat Conference. AI in Ethical Hacking and Penetration Testing. – 2022.
DARPA Cyber Grand Challenge. Autonomous AI in Cyber Defense. – 2022.
MIT CSAIL. Deep Reinforcement Learning for Cybersecurity. – 2023.
Загрузки
Опубликован
Выпуск
Раздел
Лицензия
Copyright (c) 2025 MAKTABGACHA VA MAKTAB TA’LIMI JURNALI

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.